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Capturing Local Variability for Speaker
Normalization in Speech Recognition

Antonio Miguel, Eduardo Lleida, Member, IEEE, Richard Rose, Senior Member, IEEE, Luis Buera,
Óscar Saz, and Alfonso Ortega

Abstract—The new model reduces the impact of local spectral
and temporal variability by estimating a finite set of spectral and
temporal warping factors which are applied to speech at the frame
level. Optimum warping factors are obtained while decoding in
a locally constrained search. The model involves augmenting the
states of a standard hidden Markov model (HMM), providing an
additional degree of freedom. It is argued in this paper that this
represents an efficient and effective method for compensating local
variability in speech which may have potential application to a
broader array of speech transformations. The technique is pre-
sented in the context of existing methods for frequency warping-
based speaker normalization for ASR. The new model is evaluated
in clean and noisy task domains using subsets of the Aurora 2, the
Spanish Speech-Dat-Car, and the TIDIGITS corpora. In addition,
some experiments are performed on a Spanish language corpus
collected from a population of speakers with a range of speech
disorders. It has been found that, under clean or not severely de-
graded conditions, the new model provides improvements over the
standard HMM baseline. It is argued that the framework of local
warping is an effective general approach to providing more flexible
models of speaker variability.

Index Terms—Automatic speech recognition (ASR), local
warping, maximum likelihood, speaker normalization, vocal tract
normalization.

I. INTRODUCTION

SPEAKER variability has a negative impact on the perfor-
mance of automatic speech recognition (ASR) systems. A

speech modeling technique based on local spectral and temporal
mismatch reduction is presented in this paper.

Local frequency variability is, to a limited extent, implicitly
modeled by existing techniques such as hidden Markov model
(HMM). In continuous observation density HMMs, there ex-
ists a basic mechanism to model the spectral variability that re-
sults from speaker-dependent variability in vocal tract shape.
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It is provided by the state dependent observation generating
process, which is usually assumed to follow a multimodal prob-
ability density function (pdf) such as a Gaussian mixture model
(GMM). The vocal tract shape deviations due to a large popu-
lation of speakers can be captured by the state emission pdf as
different components of the mixture. Consequently, a number
of examples of vocal tract shapes are needed so that the com-
ponents of the mixture can be estimated in the learning process.
Therefore, multiple Gaussian components for each HMM state
and speaker-matched training data are required in order to deal
with this source of variability in a standard HMM, since the
model itself cannot generalize speaker independent patterns.

Some methods have appeared in order to compensate the fre-
quency axis variability including vocal tract length normaliza-
tion (VTLN) [1], [2] which is a well-known method used for
spectral warping. VTLN has been shown to be effective in com-
pensating for long term average mismatch between the location
of spectral peaks for a test speaker and the average spectral char-
acteristics observed in the training samples. These average spec-
tral characteristics can be difficult to characterize since training
conditions are represented by the statistical HMM trained using
utterances from a large population of speakers. More general
methods exist for speaker adaptation such as maximum-like-
lihood linear regression (MLLR) [3], which reduce the mis-
match between data and model. These regression procedures
have limitations in their ability to retrain or adapt HMM models
to a speaker. Usually, a large amount of speaker adaptation data
and exact transcriptions are needed. In [4], a method for ob-
taining a frequency warping transformation using a constrained
MLLR adaptation was shown, relating both methods. More re-
cent approaches using a maximum likelihood linear transforma-
tion (MLLT) of the HMM to approximate the effects of spec-
tral warping was proposed in [5]. The principal drawback of
these methods is the need for previous speaker utterances or
extra adaptation data in order to learn how to compensate for the
spectral mismatch. In addition, all of these techniques attempt to
estimate a single transformation which minimizes spectral mis-
match over the entire utterance.

In the search for more flexible approaches there have been
other approximations for modeling the frequency warping
variability in the utterance. In [6], a model was presented
(HMM2) in which the state-dependent speech observations
were produced by a second Markov process, as the outputs of
the hidden Markov process chain. This was intended to result
in additional flexibility being provided for the frequency axis.
In [7], an approach was presented for time–frequency modeling
using a technique based on Markov random fields (MRFs).
MRFs are an extension of HMMs in which the temporal index
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assigned to states in decoding is substituted by a spatial one,
providing dependency relationships on the form of a 2-D
neighborhood. In that work, local inter-band and inter-frame
interactions present in speech were investigated.

The main motivation in this work is to find a normaliza-
tion model able to capture speaker variability. The method
described in this work provides a mechanism for the VTLN
spectral warping procedure to be locally optimized. The model
tries to capture local frequency deformations of the spectrum
envelope, which are known to originate in physiological differ-
ences among vocal tract dimensions and variation in articulatory
trajectories. A more complex and flexible speech production
scheme can be assumed, in which local elastic deformations
of the speech can be captured or generated by the model. The
method proposed, referred to here as the augMented stAte
space acousTic dEcoder (MATE), includes both training and
search algorithms, which attempt to overcome the limitations
of existing methods for compensating for spectral variability in
ASR. MATE consists of an expansion of the HMM state space
to provide local transformations that are estimated as part of
a dynamic programming search through this augmented state
space.

The first approaches to this paradigm were proposed in [8]
and then followed by [9], [10] in a more general framework al-
lowing the procedure to additionally be applied to local time
axis optimization. In [11], the interaction between this proce-
dure and methods to increase class discrimination and noise ro-
bustness were investigated. More recently, in [12], the effect of
Jacobian normalization through the estimation of a linear trans-
formation determinant was investigated. In [13], the performace
of the MATE technique was evaluated on a Spanish language
corpus collected from a population of speakers with a range of
speech disorders [14], providing promising results.

There have been many previous approaches to augmenting
the HMM state space to model sources of variability in ASR
[15], [16] or in confidence measures [17]. These include at-
tempts to model extrinsic sources of variability. For example,
an expanded HMM state space and a modified Viterbi algo-
rithm were defined to model the joint probability of speech and
noise in HMM model decomposition [15], [16]. The approaches
presented in this paper can be better described as attempts to
model intrinsic sources of variability. This is accomplished by
expanding the HMM state space to characterize spectral and
temporal variability in speech production by defining distinct
states to represent degrees of spectral and temporal warping.
Hence, these approaches may be considered to be more closely
related to techniques that use graphical models to augment the
state space to define states that represent underlying articulatory
events [18].

There are several issues addressed in this paper relating to
the MATE formalism. MATE will be presented as an expan-
sion of the HMM state space in which the optimum frame-spe-
cific warping functions are chosen to maximize the global path
likelihood in the Viterbi search. This procedure requires only a
single pass over the input utterance and produces frame-specific
estimates of the warping functions. Training and decoding algo-
rithms for MATE framework are presented in this paper.

This paper is organized as follows. Section II reviews VTLN,
a frequency warping approach to speaker normalization, which

Fig. 1. Set of piecewise linear frequency warping functions g (f), where fmax
is the sampling frequency.

is one of the existing techniques used for speaker mismatch re-
duction. Section III presents the model formulation, the modi-
fied Viterbi search algorithm performed in the augmented state
space, and the procedure for estimating the parameters using the
EM algorithm. Section IV describes the procedure for estima-
tion of dynamic cepstra using frame specific temporal resolution
and how this procedure is implemented with augmented state
space models. Section V presents the results of the experimental
study describing the performance of these new algorithms with
respect to the performance of previous more well known ex-
isting techniques. Finally, discussion and conclusions are pre-
sented in Section VI.

II. MAXIMUM-LIKELIHOOD FREQUENCY WARPING

In frequency warping-based speaker normalization tech-
niques, such as VTLN, a warped frequency scale is produced

(1)

where is the original frequency and is the warped frequency,
by selecting an optimum warping function from an ensemble
of linear frequency warping functions, ,
as described in [2]. The warping functions are usually of the
form illustrated by the curves in Fig. 1. The optimum warping
factor is chosen to maximize the average likelihood of a

length sequence of frequency-warped cepstrum observation
vectors with respect to an HMM and

.

A. Front-End Feature Extraction Notation

Let us briefly describe the procedure for extracting the
acoustic features following, for convenience in a matrix form
notation. The set of component power spectral magnitude
values for a frame of an utterance are represented as an
dimensional vector . The channel filter bank is applied to
the spectral magnitude values. It is implemented as a set of

triangular weighting functions. It is represented in matrix
form as a -dimensional matrix .

The logarithm of the outputs of these filters are computed
as . Then, the component cepstrum vectors

are computed as the discrete cosine transform of ,
. The matrix corresponds to the initial

vectors of the discrete cosine transform basis of dimension
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, excluding the zeroth order term, which provides a frequency
projection.

In order to obtain more discriminative and robust feature vec-
tors, dynamic features are usually included. This is assumed
to partially solve the observation independence assumption of
HMMs [19]. A temporal sliding window of length is taken
over the cepstrum sequence, being the length of the cepstrum
window over which we compute the dynamic features. We can
build an time projection matrix which provides a
temporal projection of the features window, which traditionally
for the speech community takes the form of the static cepstrum
coefficients and their first and second derivatives, so that .

To compute the dynamic features, we construct the matrix,
appending filter bank output frames centered on frame

(2)

Then, the dynamic features are calculated as

(3)

where is the feature vector, and is a matrix to vector
operator, which converts the matrix to a column vector.
The notation used to describe feature extraction given in (3) is
important because this formulation allows us to present both
temporal and frequency local projections. The class of local
transformations considered in this work consists of either mod-
ifying the frequency projection or the temporal projection for a
single frame. The final step is to append to this vector the en-
ergy parameter and their derivatives which can be computed by
applying the same temporal projection matrix.

B. Frequency-Warped Features

The procedure for obtaining the frequency-warped cepstrum
sequence involves modifying the Mel-frequency filter bank

that is used in Mel-frequency cepstrum coefficient (MFCC)
feature analysis [2]. Following previous notation, frequency
warping can be implemented by applying the warping functions

to the array of filter bank coefficients in the matrix .
The set of warped cepstrum vectors for a frame can then be
expressed as

(4)

An alternative implementation can be used to obtain . In
[4], it has been shown that, with the proper assumptions, the
filter bank modification in is equivalent to applying a linear
transformation in the cepstrum domain

(5)

Then, the discrete Fourier transform (DCT) frequency projec-
tion and the linear projection can be unified in a local
frequency warping matrix

(6)

where .

C. Maximum-Likelihood Estimation

In standard frequency warping methods, the optimal trans-
formation factor within the discrete set for
a speaker is obtained from a maximum-likelihood estimation
process involving speech samples and transcriptions [2]. Fol-
lowing the warping process described previously, warped fea-
tures are computed for each warping factor . Then, the
optimal warping factor is obtained by maximizing the like-
lihood of the warped utterance with respect to the model param-
eters and the transcription

(7)

While this maximum-likelihood-based warping procedure
has been shown to significantly reduce word error rate (WER)
in many cases, it has two important limitations. The first one is
that it can be unwieldy to apply. It is generally implemented as a
two-pass procedure which can make real-time implementation
difficult. The first pass is used to generate an initial hypothe-
sized word string, when the transcription is unknown. This
initial word string is then used in a second pass to compute the
likelihood of the -warped utterances by aligning with
the decoded word string.

The second limitation is related to the fact that only a single
linear warping function is selected for an entire utterance. Even
though physiological evidence indicates that all phonetic events
do not exhibit similar spectral variation as a result of physiolog-
ical differences on vocal tract shape, this technique estimates a
single transformation for an entire utterance. The procedure de-
scribed in this work addresses both of these issues.

III. AUGMENTED STATE SPACE MODELS

Augmented state space models are presented here for mod-
eling variations in vocal tract shape that occurs during speech
utterances and across speakers. A new degree of freedom is
added to track those local changes in a HMM framework. Since
this paper presents the model from a feature normalization
point of view, the formulation, EM derivation, and decoding
algorithms expand the work presented in [10]. This section
presents the description of the formulation for training normal-
ized models under the augmented state space framework. Also,
a modified search algorithm for decoding speech utterances is
presented since in MATE, the Viterbi algorithm is implemented
in an augmented state space which allows frame-specific spec-
tral warping functions to be estimated as part of the search.

Fig. 2 shows the local alignment basic idea, by means of
three examples of utterances (manually synthesized and mod-
ified for illustrative purposes) of the same phoneme transition
(plosive-vowel) for different speakers. The three spectrograms
along the top row of Fig. 2 illustrate how the distribution of spec-
tral energy for the plosive is consistent across all three speakers.
However, there is considerable variability in the formant posi-
tions for the vowel across speakers. The figure illustrates the
potential benefits of selectively warping the vowel portion of
these utterances to be more consistent with the average spec-
trum of the HMM model shown on the right. In this example,
estimating a single warping transformation over the whole ut-
terance would not have the same effect. The local alignment
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Fig. 2. Example of local alignment, observations are transformed towards the
model, where speech data has been manually synthesized and modified for il-
lustrative purposes.

procedure works in the direction indicated by the arrows, com-
pressing or expanding the frequency scale. It is applied only in
the sounds where there is significant variation with respect to
the HMM model, in this case in the vowel. The main motiva-
tion for MATE is to locally adapt speech features to the general
model.

Since, it is necessary for MATE to track local deformations
of speech, the simpler solution is to define a discrete set of can-
didate warpings in a manner similar to that used in VTLN [11].
Then a second criterion adopted is to impose some inertia and
speed constraints to the local transformation dynamics. Those
constraints allow us to assume a model for the warping dy-
namics which follows a first-order Markov process, restricting
the maximum physical speed they can change and providing a
dependency on the previous warping. The MATE solution is an
expansion of the state space, so that expanded states are identi-
fied with warpings, and we can apply the same dynamic con-
straints associated with the standard state sequence in HMM
modeling. Therefore, the expanded models fit naturally in the
HMM framework.

Let us describe in detail the augmented state space model for
a discrete set of local transformations. Given a state HMM,
the MATE state expansion is defined so that expanded states
are generated from each of the original model states as the
Cartesian product, where the state identifiers of original model

now become pairs . The expanded state space size is
. An interesting consequence is that the sequences of

deformations can be learnt in the model parameters as transition
probabilities between the expanded states, i.e., transition from a
state to .

To indicate the state producing an observation, let us define
the indicator vector variables and for the state and the
transformation for a time index , respectively. The vector

indicates the state index which generated the
observation at time index with and zeros elsewhere,
as in [12] and [20]. The vector is another indicator vector

, with for a local transformation index
at time and zeros elsewhere.

As in [4] and [21], we tie the pdf of the augmented state
to the unwarped state pdf as

(8)

(9)

where is the augmented state observa-
tion pdf, and is the original model state observa-
tion pdf. The warped feature vector is obtained from (6),
and is the warping factor at time index . Therefore, the state
space expansion operation does not increase the state observa-
tion pdf parameters which are tied to their original state . The
additional factor is the determinant of the Jacobian of the
transformation

(10)

which is discussed in Appendix I for the speech dynamic ob-
servation vectors . To summarize, the augmented state space
model can be seen as a 2-D HMM topology of size with
a pdf for each state tied to the original 1-D HMM state

pdf.
The augmented model can be interpreted within the dynamic

Bayesian networks framework, as it can be done with standard
HMM [18], [22]. The model topology would be an expansion
of a single HMM Bayesian network topology to represent aug-
mented states , which would generate warped feature vec-
tors . Additional arcs between augmented states would be
required to model MATE state transition probabilities. There is
also another point of view for the interpretation of MATE which
can also be thought to be a kind of composed model. The model
composition could be defined similarly to [15] and [16], with
two separate models, one for the standard word HMM and an-
other for the warping factors.

A. Complete Model

In order to define the local transformation estimation process,
let us first assume that a complete set of labeled data is available.
The joint pdf of the data and label sequences is called complete
or visible model. Then, let be
a length sequence of speech observations, a state label se-
quence, , a frame specific trans-
formation label sequence, . We
can produce a frame-specific warped feature vector sequence
as , as described in (6), where

(with the dimension of the feature vector) and
and are the augmented state labels for time index as previ-
ously defined.

The joint pdf of a local warped sequence of this kind can be
written as follows using Bayes rule

(11)

(12)

which is computationally intractable.
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Assuming first-order Markov assumptions over (12) and as-
suming independence between observations, we can approxi-
mate it by a simpler expression

(13)

where the inertia and memory constraints imposed on the
dynamics of the local transformations can be identified in the
term , which will be an important part of
the search algorithm. Then, as in a standard HMM, the state in-
dicator vectors follow a Multinomial distribution of parameters

(14)

where is the transition from state to
probability

(15)
The joint probability in (13) can be written as in (16).

Taking into account that the indicator variables are zeros in
all positions except one, then we can express (13) as (16), where
the expanded state pdf for the warped data

follows a distribution of the form of (8). The en-
semble of parameters composed by and the state pdfs are the
parameter set, referred as

(16)

B. MATE Decoding Algorithm

A Viterbi beam search decoder for continuous speech recog-
nition is implemented by propagating paths into the nodes of
a 2-D trellis. Each node of the trellis corresponds to one of
the HMM states evaluated for observation vectors

. In the MATE decoder, the state space is ex-
panded by a factor of , where is the size of the ensemble
of warping functions. This effectively results in a 3-D trellis.
Each node of this augmented trellis now corresponds to the aug-
mented state space defined in Section III.

The optimum sequence of states is identified for the decoding
process in a standard HMM using the Viterbi algorithm, which
we express as

(17)

where is the likelihood of the optimum path terminating
in HMM state at time , and is the transition probability
from state to state . The is computed over all states
that are permitted by the HMM model to propagate into state
which, for a left-to-right HMM topology, would be and

. In addition to the accumulated path likelihood , a state
traceback variable is defined which stores the sequence of
state indices identified in (17).

Fig. 3. (a) Spectrogram of an example of the word “two.” (b) Likelihood of
observation of each transformation factor for the states of the best path found
by the Viterbi algorithm (global VTLN warping � = 1:13) and optimal path in
white line.

In the MATE decoder, the optimum sequence of states in
the augmented state space is identified using a modified Viterbi
algorithm, where the accumulated path likelihood in the aug-
mented state space is defined recursively as

(18)
where is the likelihood of the optimum path terminating
in state at time , and is the transition proba-
bility from state to state . The is computed
over all states that are permitted by the HMM model to propa-
gate into state , and the observation pdfs in the augmented
state space share the same parameters as the original states as
expressed in (8). Also, an augmented state space traceback vari-
able is defined to store the sequence of state indices
identified in (18).

Structural constraints can be placed on standard HMM
topologies by constraining the allowable transitions between
HMM states. Constraints can also be placed on the transfor-
mations that are permitted at state in the augmented
state space. These constraints can be applied by setting a subset
of the transition probabilities equal to zero. In this
paper, transition probabilities were constrained so that the
frequency-warping transformations applied to adjacent frames
were required to be taken from adjacent indices in the ensemble

if (19)

These constraints have the effect of reducing the computational
complexity in search. Furthermore, they also provide a mecha-
nism for limiting the degrees of freedom in the application of
spectral transformations to reflect a more physiologically plau-
sible degree of variability and reduce the probability of local
alignment errors between different spectrally close sounds. Ad-
ditional constraints can be applied. For example, HMM states
for nonspeech models are constrained so that no transformations
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Fig. 4. Examples of the best warping decoded sequence for two utterances of the digit “three” with respect to an HMM trained from a population of adult speakers.
(a) Uttered by a boy. (b) Uttered by a man.

can be applied to the observation vectors that are associated with
those states.

An illustration of the effect of the MATE decoder is provided
by the spectrogram and log likelihood plots for an utterance of
the word “two” shown in Fig. 3(a) and (b), respectively. Fig. 3(b)
displays the log likelihoods plotted versus time for a set of

possible frequency warping transformations that correspond
to compressing or expanding the frequency axis by as much as
15%. This plot was obtained by performing Viterbi decoding
on this utterance using the modified Viterbi algorithm given in
(18). The trajectory of warping functions corresponding to the
optimal path is indicated by a superimposed white line. It is
interesting that, for the initial part of the word corresponding
to the unvoiced aspirated “t” sound, values of are
chosen. This effectively corresponds to the choice of no spectral
transformation for this region. However, in the voiced part of
the word, a warping value is chosen that is similar to the value
selected by the global linear VTLN warping factor that had been
estimated for this utterance .

Figs. 4 and 5 compare the local warping factors selected for
utterances of a given word that are taken from speakers that
are either closely matched or highly mismatched to the training
speaker population. The plot on the top of each pair of plots in
Figs. 4 and 5 depicts a spectrogram of MFCC log filter bank en-
ergies. The plot on the bottom corresponds to the same trajectory
of warping factors shown in Fig. 3(b). The figures show the best
found sequence of warping factors for a case of matched condi-
tions (adult utterances decoded with an adult model), and mis-
matched conditions (children utterances decoded with the adult
model). We can notice there how due to the physical restriction
in the speed of change imposed by the constraint (20), the algo-
rithm finds a smooth best path among all the likelihood values.
Also, we can notice that in the case of matched conditions, there
is no need for warping and in the case of the children utterances
more warping effort has to be made. We also can see again that
the most warped frames correspond to voiced sounds in all the
utterances. In both figures it is clear that, in the case of children,

formant centers are located at higher frequencies than in adults,
since the center frequency of the resonances of the vocal tract
are inversely proportional to the length of the vocal tract. Since
the HMM models where trained from an adult speaker popu-
lation, it is not surprising that the margnitude of the warping
factors selected for the children speakers in Figs. 4(a) and 5(a)
is greater than the magnitude of the warping factors chosen for
the adults. These anecdotal examples will be supported by more
vigorous ASR results in Section V.

The work in [8] also addressed the extension of the search
space in ASR by estimating local frequency-warping parame-
ters. However, their approach is limited to the definition of a
decoding framework for local warping factor estimation. This
section expands on the system developed in [8] by developing
a general modeling framework that enable the following capa-
bilities. First, all parameters in the new model can be estimated
from data. Additional domain knowledge can be applied by con-
straining the structure of this general model rather than making
ad hoc assumptions from the outset. For example, it was as-
sumed in [8] that transition probabilities were constrained in the
following way:

(20)

with defined as an indicator function with values 0 and 1.
However, in MATE, the expanded state transitions, i.e.,
to can be estimated in training. Second, an exact solu-
tion to likelihood computation from transformed observations
can be implemented in this framework by incorporating the Ja-
cobian term in local probability estimation. Finally, the general
framework facilitates the use of the augmented state space to
represent other sources of variability including temporal com-
pression and expansion as described in Section IV.

C. EM Training Algorithm

Since the label sequences and are not observable, it is
not possible to solve for the parameters of the augmented state
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Fig. 5. Examples of the best warping decoded sequence for two utterances of the digit “seven” with respect to an HMM trained from a population of adult speakers.
(a) Uttered by a girl. (b) Uttered by a woman.

space model directly. Treating and as hidden variables,
the parameters of the augmented state space model can be esti-
mated by using the expectation-maximization (EM) algorithm
[23]. The development of the EM algorithm for MATE is sim-
ilar to that used for standard continuous-density HMM [24].

The first step, the E expectation step, consists of
calculating the auxiliary function

, which involves expected
value computations for the hidden variables with respect to
the data and the model parameters at iteration . It can be
expressed as in (21) for our model, where the expressions noted
as refer to the expected values of the variable between
the parentheses

(21)

In the first one, the expected value for a state and a transfor-
mation at a time can be calculated as

(22)

(23)

(24)

(25)

since all terms of the sum in (23) are 0 except the one pointed
by the indicator vector components and .

In the second one, the expected value of a transition

(26)

(27)

(28)

(29)

(30)

(31)

where all the terms of the sum are also 0 except the indicated
one, corresponding to states and .

Those expressions are difficult to calculate directly, but
thanks to the expanded auxiliary forward and backward func-
tions , , which can be calculated recursively,
computations are reduced to an affordable level as in standard
HMM. The definition of those variables and the calculation of
the expected values using them is formulated in Appendix II.

The second step M, the maximization step, consists of max-
imizing the function with respect to the model pa-
rameters at iteration to obtain the values for the parameters in
the next iteration subject to the constraint

(32)

for all and .
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After computing the auxiliary function and the expected
values, the new parameters will be obtained from the optimiza-
tion

(33)

for all and . Taking derivatives with
respect to the parameter set and the Lagrange multipliers and
equating them to zero, we obtain the following expressions for
the parameter estimations in the iteration as:

(34)

for all possible values of and over the augmented
state space.

If the state observation pdf is a mixture of Gaussians

(35)

where is the number of components, is a hidden vari-
able indicating the component generating the observation and

. The expected value
for the hidden variable is

(36)

Then, the GMM parameter estimation expressions are

(37)

(38)

(39)

(40)

for all states in the initial state space of size and com-
ponents in the mixture.

In order to speed up the method, the expected values in (22)
and (26), defined in Section II, can be approximated as 0 or
1 using the Viterbi decoding algorithm (18). This is similar to
the approach used for standard HMM in the segmental k-means
approach for training [25].

IV. LOCAL TIME WARP FOR DYNAMIC FEATURES

This section presents a method for modeling the dynamic
temporal characteristics of speech. The method involves

frame-specific warping of the time axis to facilitate locally
optimum time resolution in the computation of the dynamic
cepstrum. Temporal characteristics of the dynamic cepstrum
are often described by way of the average modulation spec-
trum. However, characterizing the dynamic cepstrum have
not previous approaches attempted to represent local temporal
variability in speech. This section describes how the MATE
framework can be applied to selecting the frame-specific tem-
poral resolution for the dynamic features in MFCC feature
analysis.

Temporal variability is implicitly modeled by the nonlinear
time alignment performed by the Viterbi algorithm. However,
this nonlinear time alignment does not extend to the computa-
tion of frame level features. This is because the length of the
dynamic parameter analysis window remains static despite the
fact that the rate of the audio events is not fixed [26].

Allowing local optimization of the temporal resolution over
which the first- and second-order difference cepstra are com-
puted is equivalent to a nonuniform sampling of the time scale
for dynamic features. In the case of dynamic cepstrum computa-
tion, the temporal window length used for computing first- and
second-order dynamic cepstrum coefficients is selected individ-
ually for each frame to produce more accurate dynamic features.
In this case, Viterbi search is also modified so that an optimum
time resolution can be chosen in the search process. For the pur-
pose of computing the dynamic cepstrum, the frame update in-
terval can be compressed or expanded by a “resolution factor”

to obtain a new update interval.
Given an ensemble of resolution factors , the

dynamic features can be locally optimized using the modified
Viterbi algorithm in (18), where the frequency-warped parame-
ters are replaced by the new -dependent parameters .
The same local constraints that were applied in Section III to
limit the rate of change of the frequency-warping parameters
will also be applied to the temporal resolution parameters.

To account for this, we define as the log filter bank output
vector computed for each sample. The original filter bank output
vectors are a downsampled version of , where ,
and is the standard frame update interval (the sample to frame
rate subsampling factor). In this resampling scenario, is the
frame index defined in Section II and is the time index for a
sample rate of one frame per sample. A window of filter bank
outputs centered at frame can be written in terms of vectors
as

(41)

where the matrix is size .
The following time projection matrix can perform the

local time warping of factor since it is defined to obtain the
dynamic features and the downsampling by a factor si-
multaneously

if ,
elsewhere.

(42)

In (42), the values not equal to zero apply the downsam-
pling and the time projection, since are the components
of the previously defined standard time projection matrix

, with and .
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Using notation similar to that used to describe localized fre-
quency warping in (6), the feature vectors obtained from local-
ized time warping can be written as

(43)

where the time projection matrix is the previously defined in
(42).

By estimating using the augmented state space decoding
algorithm in Section III, frame-specific temporal resolution is
obtained for dynamic features that maximizes the likelihood of
the utterance with respect to the original HMM. In the search
of the optimum time factors, we also apply the continuity con-
straints described in Section III-B.

V. EXPERIMENTS

Three sets of experiments have been performed. In the first
one, a general study of the MATE framework in connected
digits for speaker-independent ASR has been performed. In
the second, one a study of speaker variability was performed,
testing the ability of the model to compensate for severe
inter-speaker mismatch. Finally, in the third set of experiments,
the MATE-based speaker normalization techniques were eval-
uated on a speech corpus containing speech from a population
of children diagnosed with speech disorders. The task domains
were based on a Spanish language subset of the Speech-Dat-Car
database [27], the “A” subset of the Aurora 2 task [28], which
includes subway, babble, car, and exhibition noises for the first
experiment, the TIDIGITS database [29] for the second experi-
ment, and a Spanish language corpus of speakers with impaired
and unimpaired speech [13], [14], which will be analyzed in
the third experiment. The experiments relating to warping of
the frequency axis in the MATE framework were performed
using the approximation to the Jacobian term described in
Appendix I.

A. Speaker-Independent Models

For speaker-independent experiments, HMM word models
with 16 states and three Gaussians per state were used to model
the vocabulary of spoken digits. Initial and final silence were
modeled by three-state HMMs with six Gaussians per state.
Inter-word silence was modeled by one state HMM with six
Gaussians. The parameters used in the experiments were the
standard [30] and the advanced ETSI front end [31], both with a
window size of 25 ms and a 10-ms frame update interval. Twelve
cepstrum coefficients and the energy are the static feature vector.
Then, velocity and acceleration parameters were computed for
a window of nine static frames after a time projection with the

matrix of size 9 3 as described in Section II, resulting in a
total of 39 parameters. The baseline models were obtained with
20 training iterations and used to build initial MATE models ac-
cording to the observation densities given in (8). The number
of transformations in all the experiments for the local warping
factors was set up to for time and frequency MATE.

Retrained MATE models were obtained after one iteration by
using the training formulas in Section III. Viterbi alignment for
the expected values [25] was used, since in the experiments, we

TABLE I
CLEAN TEST RECOGNITION RESULTS IN WER%

did not experience any significant difference by training after
computing the expected values from the augmented forward and
backward auxiliary functions and compared to
segmental k-means. This result is similar to what many authors
have found comparing standard HMM trained with EM or seg-
mental k-means.

Table I shows the experimental results obtained using
noise-free speech in order to compare performance of the local
temporal and frequency optimization techniques to the original
baseline performance using the standard ETSI front end. The
experiments were performed on two data sets. First, the Aurora2
clean training set was used which consists of 8440 phrases
(27 727 digits) and test set consists of 4004 phrases (13 159
digits). Second, a subset of Spanish language Speech-Dat-Car
was used. A noise-free close-talk microphone training set
consisting of 1896 phrases (9948 digits) and test set consisting
of 1087 phrases (5701 digits) were used.

The results in Table I show that the MATE-frequency model
reduces WER with respect to the baseline system to VTLN for
both task domains. It is also clear from Table I that the tem-
poral optimization performed using the MATE decoder (MATE-
time) also reduced WER with respect to the baseline with a
15% reduction obtained for the Speech-Dat-Car corpus. This
improvement may be a result of the greater temporal variability
of the speech in this corpus since it was collected under a variety
of driving conditions. Nevertheless, MATE-time retraining did
not provide any further improvement. Additional experiments
should be performed to conclude the effect of MATE-time on
a spontaneous speech corpus that exhibited a wider variety of
speaking styles. The best results were obtained by using re-
trained-MATE-frequency models, given a WER improvement
of 23% for Aurora 2 and 24% for the Speech-Dat-Car subset.
In these experiments, a maximum of 20% frequency warping
for Speech-Dat-Car and 15% for Aurora2 (i.e., between 0.8
and 1.2 and between 0.85 and 1.15, respectively) and a 10%
of temporal resolution deviation (i.e., between 0.9 and 1.1)
were allowed. was five warpings for all the cases. The best
configuration for VTLN was used in this comparison, which is
the same as in [2], ranging from 0.88 to 1.22 and
warpings. VTLN optimal range is narrower than MATE since
VTLN extracts the best average warping factor, and MATE is a
frame-by-frame estimation.

The best values of improvement of MATE in Table I for both
databases have been evaluated for statistical confidence with
McNemar’s test [32], since the test database for baseline and
MATE is the same. This showed Aurora2 results to be signifi-
cant within the confidence interval of 95%, but they were not for
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Fig. 6. Results for some values ofN and maximum � on Aurora2 clean test for MATE freq. with respect to the baseline. (a) Error rate of MATE freq. for different
number of warpings N and maximum warping, � = 10%. (b) Maximum warping value � deviation in % with N = 5. (c) Number of iterations in training,
where 0 means no retrained model, with � = 15% and N = 5.

the Speech-Dat-Car in this interval, due to the size of the data-
base. Results from Speech-Dat-Car were statistically significant
within the confidence interval of 90%.

Fig. 6(a) and (b) shows the performance of MATE-freq with
respect to the number of frames and the maximum factor in
WER%. It can be seen that there is an optimum value, but MATE
improves the baseline for all the common values. Fig. 6(c) shows
a slight improvement of the performance of MATE-freq when
retraining with respect to the number of iterations.

In this database, an experiment on cepstrum resolution was
performed. The dimensionality of the standard cepstrum fea-
ture vector for ASR of 12 coefficients has been empirically de-
rived to provide a minimum WER in most tasks. As this dimen-
sionality grows, lower results are achieved due to the fact that
higher resolution spectral estimations begin to capture too much
speaker-dependent variability. In this experiment, it is shown
that thanks to the local warpings, an increase in the dimension-
ality of the frequency features still provides improvements in
results since variability is partially reduced.

The experiment was performed with speech-Dat-Car and
Aurora2 clean test databases, 16 state word models with one
Gaussian component and the same silence models as previous
experiments. Different values for the number of cepstrum
coefficients were tested while the number of derivatives was
fixed as 2. In Fig. 7, it is shown that, as expected, the best
baseline result is obtained for 12 cepstrum coefficients. The
results obtained for MATE with local frequency normalization,
with ranging from 0.8 to 1.2 and warpings show a
different tendency, the WER still decreases for a larger number
of cepstrum coefficients. The minimum error for MATE was
found for 16 cepstrum coefficients.

These results are very interesting since they show the ability
of MATE to reduce local variability by aligning at frame level
for frequency axis. If the acoustic events in the short time spec-
trograms are aligned, then the variability is partially removed so
that events of the same nature are compared. The effect of small
unalignment is more noticeable for small-scale acoustic events.
Consequently, if the spectrograms are aligned, more cepstrum
(DCT) coefficients can be used in order to capture small scale
spectrogram details and, eventually, reduce the WER. These ex-
periments show that local alignments are useful to improve the
front-end, because the discriminant speech events can be cap-

Fig. 7. Mean WER for baseline system and MATE for different number of
cepstrum coefficients for one Gaussian per state digit word models. (a) Aurora2
database.( b) Speech-Dat-Car database.

tured with more detail. Even if the relative gain with respect to
the system with 12 coefficients is not statistically significant,
further attention would be deserved for this trend.

This effect can be argued as follows: let us assume that there
exists a small aligning noise compared with the size of the
bigger structures we are measuring, such as formants. Then, the
higher order cepstrum projections would be the most affected
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Fig. 8. Aurora2 set “A” average results for the Advanced ETSI Front-End. (a) Multicondition training. (b) Clean training, both from clean signal to 10 dB.

by an unalignment of small scale, compared to the first cepstrum
vectors, which tend to capture bigger structures and remain
unaffected by a small unalignment. This is clear if we think
that keeping the first vectors of a DCT projection is equivalent
to smoothing the spectrogram. An eventual alignment can be
of benefit in terms of sharpness in the pattern we are about to
learn. Under this reasoning, Fig. 7 results demonstrate that the
alignment is being effectively produced, since an increase in
the number of projection vectors reduces the WER, while this
is not happening in the baseline HMM case. Similarly to the
dynamic programming alignment effect for speech utterances
aligned with audio templates or models, this local alignment
helps the classifier to compare local events of the same nature
together.

Although the main motivation of the paper is not a noise ro-
bustness study, an experiment was performed in order to eval-
uate the degradation of the framework benefits under noise con-
ditions. Fig. 8 shows the results of experiments performed using
Aurora 2 test set “A” noise conditions. Clean and multicon-
dition training cases were evaluated. In order to increase the
noise robustness of the model, a modification of Advanced ETSI
Front-End, AFE, parameters for frequency warping, performed
as in (6), were used. The average improvement of MATE, with

ranging from to 1.2 and warpings, compared to un-
modified Advanced ETSI front end features found for the com-
plete test set “A,” was 6.77% for the multicondition training
and 9.64% for clean training. This corresponds to an average
improvement of 8.20% for all the noise conditions. Greater im-
provements are obtained in signals over 10 dB of SNR, as shown
in Fig. 8. These results show that the use of Advanced ETSI
front end jointly with the MATE-frequency decoder gives sim-
ilar WER improvements to those obtained with clean speech in
Table I.

B. Speaker Variability

An experiment investigating inter-speaker variability was
performed in order to evaluate the performance of the new
models under mismatched conditions. Multiple experiments
have been carried out combining different speaker group
training and testing conditions as is shown in this section. In a

previous study, extensive experiments were performed focused
on recognition on speech from children with the TIDIGITS
corpus [33]. In this work, the task domain for the mismatch
conditions was also the TIDIGITS corpus. This is a noise-free
corpus organized in age and gender groups for a total of
326 speakers (111 men, 114 women, 50 boys, 51 girls). In
this experimental study, seven partitions were defined in the
training and testing sets: “boy,” “girl,” “man,” “woman,” “boy
+ girl,” “man + woman,” and “all.” For all those partitions,
word models consisting of 16 HMM states per word and a
begin-end silence model containing three states were trained.
The standard ETSI feature set plus energy and their first and
second derivatives, as defined in Section II, were used. In this
study, the speaker variability reduction on a high mismatch task
was evaluated. This experiment was performed on a subset of
the TIDIGITS corpus containing only isolated digits in order to
test the ability of the proposed method to reduce inter-speaker
mismatch when only limited training data are available (3586
isolated digit utterances for training and 3582 for testing). As
mismatch conditions were tested, models for MATE were not
reestimated and the simple expansion of states was performed,
a 20% of deviation for was set, i.e., between 0.8 and 1.2,
and . The results of this study are shown in Fig. 9, the
horizontal axis of this figure represents the number of Gaussian
mixtures per state in the HMM. HMM models were trained
from utterances taken from each of the above seven data parti-
tions. For each case, the models were tested with data from of
all the partitions excluding matching cases (i.e., training model
from the “boy” labeled partition and testing with “man” labeled
partition), giving a total of 42 mismatch testing experiments.
The WER in Fig. 9 was calculated as the average of the WER
of all those experiments. It is clear from Fig. 9 that the effect
of overtraining is observable as the number of Gaussian com-
ponents grow, since it is a small data set. However MATE can
reduce the WER effectively in this kind of situation.

Comparing the best obtained result with respect to the HMM
baseline with four Gaussians, the mean WER reduction is a 79%
for MATE and a 14% of reduction for VTLN in this same sit-
uation. In this experiment, the standard deviations of the WER
values were 6.6% for the baseline, 1.5% for MATE and 5.7%
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Fig. 9. Mean WER in the speaker train and test models mismatch isolated digits
experiment (from TIDIGITS corpus) for the baseline and MATE.

for VTLN. Two reasons can be given to explain the results ob-
tained for VTLN. First, since isolated digit utterances are very
short, then when an error is produced for the hypothesis, the
optimization of the warping factor is worse than in longer
utterances. In longer utterances, most of the words of the hy-
pothesis could be correct, then the factor is better estimated by
maximum likelihood and part of the errors could be recovered
in the second pass. The worst are the hypotheses, the higher is
WER after VTLN. At a certain level of errors, VTLN even de-
grades the performance of the system. Second, in on order to
compare the effect of the local warping, the number of transfor-
mations in VTLN has been fixed to be the same as in MATE, in
this experiment , which is a much rougher step than the
usual ones for VTLN (i.e., or 13).

This is an artificial set, but there are many applications were
there exists train and test mismatch. These experiments show
the ability of generalization of MATE in controlled speaker mis-
match situations where unseen data are recognized (e.g., test
children with trained adult models), since the mechanism of
adaptation to the speaker lies in the model and then less training
data are required. This can beusefull for many ASR systems
where there is no prior information of the kind of speaker.

C. A Speech Corpus From Impaired and Unimpaired Speakers

Speech disorders such as dysarthria, dyslalia, dysglossia, or
aphasia [34] dramatically affect the communication abilities of
those who suffer them [35]. Although the range of causes and
symptoms of these disorders is very wide, these speech hand-
icaps can mainly be originated by one of these three reasons.
First, different forms of brain damage, like cerebral palsy, or
stroke can lead to dysarthria or aphasia [34], with limited con-
trol of the organs used for speech production. Second, when any
of the organs of the articulatory system (tongue, mouth, vocal
chords, etc.) is affected in its morphology or movement, it may
lose its ability to generate correct speech. This situation leads to
the presence of a dysglossia. Finally, when there is no physical
disability that affects speech, and usually related to a type of de-
velopmental disabilities like Down Syndrome, a dyslalia can ap-
pear as the other main type of speech pathology. In this situation,
the patient mistakes or misses different sounds and phonemes
during the production of the speech. The study of all of these

disorders from a phonological point of view has clearly shown
how they affect the normal production of speech, resulting in a
sometimes critical variation of the main parameters of speech
[36].

The corpus used for this work was recorded by the Depart-
ment of Signals and Communications from the University of Las
Palmas de Gran Canaria (Spain). The corpus contains 1077 ut-
terances of unimpaired speech and 2470 utterances of impaired
speech recorded by several speakers by terms of age and gender.
The phonological content of the corpus consists of utterances of
the 57 words from the “Induced Phonological Register.” This
set of words contains a phonetically rich selection of words that
includes nearly all the phonemes in the Spanish language, as
well as diphthongs and other singularities of the language. The
length of the words is balanced and range from one-syllable
words to four-syllable words. The corpus was originally used
for the research in identification and classification of impaired
speech [14] and also was evaluated in [13].

When dealing with impaired speech, the selection of the
HMM structure does not necessarily have to agree with the
traditional structures [37]. The experiments performed evaluate
a number of different HMM word models with increasing state
number. In Fig. 10, it can be seen that the optimal size of the
word-based HMM was around 24 states per model. Given
the small amount of data available, the number of Gaussians
in the HMM was chosen to be one Gaussian component per
state, since more components increased the WER as result of
overtraining. The baseline in the three cases of matched-model
for unimpaired speech and impaired speech is shown in Fig. 10.
The results over the four train-test sets present significantly
higher WER for the impaired speech, showing the difficulty
of this ASR task. The results of the frequency MATE with

between 0.8 and 1.2 are also shown. There is a noticeable
reduction in the WER, 11.14% for impaired speech in matched
train and test conditions [Fig. 10(b)] and 38.81% for unim-
paired speech in matched train and test conditions [Fig. 10(a)]
and 10.63% in mismatch conditions [Fig. 10(c)] i.e., train data
is unimpaired speech and test data is impaired speech. We see
that the improvement is smaller when evaluated on the impaired
speech corpus. The reason for this is due to the fact that there
are a large number of disfluencies and severe mispronunciations
in this corpus. The large number of recognition errors that arise
from these effects represents a larger portion of the overall
error rate than any of the other speech corpora used in this
study. Clearly, it is necessary to use other means for modeling
this class of errors. These results demonstrate that the impact
of the frequency variability on the ASR performance can be
reduced by more complex models in which variability is taken
into account.

VI. DISCUSSION AND CONCLUSION

An augmented state space acoustic decoding method for
speech variability normalization (MATE) has been presented.
The algorithm can be considered to be an extension to HMM
and VTLN methods. The technique provides a mechanism for
either the spectral warping or the dynamic feature computation
to be locally optimized. In the MATE decoder, the optimum
sequence of states in the augmented state space is identified
using a modified Viterbi algorithm. It allows frame specific
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Fig. 10. Mean WER for baseline system and MATE for different number of HMM states on impaired speech. (a) Unimpaired speech is used for train and test the
models. (b) Models are trained with unimpaired speech and tested with impaired speech. (c) Models are trained and tested with impaired speech.

spectral warping functions or temporal resolution for the dy-
namic features to be estimated as part of search. It includes
frame-specific transformations of the speech, by means of
expansion of the HMM state space while at the same time not
increasing substantially the number of parameters used in the
model or the computational complexity during decoding.

The MATE approach was evaluated on four speech cor-
pora including Aurora 2, the Spanish Speech-Dat-Car, and
the TIDIGITS, and a Spanish language corpus of speakers
with impaired and unimpaired childrens’ speech. Experiments
were performed under clean and noisy speech conditions.
The method has been compared in the context of existing
methods for frequency warping-based speaker normalization
and existing methods for computation of dynamic features. The
results have shown that MATE is an effective method for com-
pensating the local variability of the speech compared to VTLN
methods. MATE-frequency gives more than a factor of two in
reduction of WER over that obtained using VTLN. MATE-time
was shown to provide more than 15% WER reduction when
used in real and stressed situations.

These results suggest that there may be other speech trans-
formations that may be applied in the context of the constrained
search algorithm described here. The MATE decoder can be
seen as a method for making HMMs more “locally elastic”
and providing a mechanism for better tracking the dynamics
of speech variability. Application to domains that can be char-
acterized as having more extreme speaker variability, arising
from increased vocal effort or task related stress, will provide a
further indication of the potential benefits of these techniques.
In [38], existing VTLN methods are studied, and it is suggested
how effects of stress on the vocal tract are not uniform during
an utterance. The proposed method’s main motivation is to
model these kinds of situations.

The experiments related to severe speaker mismatch reduc-
tion tested on TIDIGITS corpus have shown significant WER
reductions. When the system was tested with speakers from dif-
ferent populations than those whose data were used to train the
models, the improvement reached up to 79% for the best base-
line system case, in a relatively small subset of the corpus.

Also we have presented experiments of speech uttered by
people with several kinds of speech disorders. It has been shown

how speech disorders affect the speech signal when comparing
impaired and unimpaired ASR results. The final recognition re-
sults show improvements up to 17% in WER, which can be of
help in computer-aided systems. These results point out that a
warping method like MATE can reduce variations in speech for
ASR.

Clearly, the computational load of the MATE decoder grows
with the number of transformations . According to the con-
straint (20), the number of transitions from an expanded state
grows a factor of 3, then the total complexity is increased by a
factor of . This complexity could be reduced by more effi-
cient pruning algorithms.

For future work, we should consider the possibility of
reducing the impact of time and frequency distortions simul-
taneously in a time–frequency warping method. Better results
should be expected by taking into account interaction between
both domains.

APPENDIX I

The likelihood normalizing term, the determinant of the Jaco-
bian, must be present when a pdf is defined after a transforma-
tion or function of a given variable, as in (8). The warped static
feature vector can be expressed as a linear function of the
unwarped vector (5), as in [39]. Then we express the warped
dynamic feature vector as

(I-1)

where is the dynamic feature vector at time warped with
the transformation indicated by , i.e., the warping factor
for the component and zeros elsewhere.

The dynamic feature vector transformation matrix is
now defined for a particular case, the ETSI standard front-end.
In ETSI standard, the static feature vector has cep-
strum components and the log energy. The number of dynamic
streams for the dynamic projection, in (3), is , i.e.,
static, first, and second time derivatives. The matrix is then
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Fig. 11. Plot of �log j ~A j for 39-dimensional ETSI cepstral coefficients
as a function of � .

a three block diagonal matrix of size 39 39 for dynamic fea-
ture vector warping

(I-2)

being the warping matrix for the static features, (of size 13
13) as defined in (5).
After (I-1), the Jacobian determinant can be calculated as

(I-3)

being one the th component of , , and zeros else-
where. Where is the static cepstrum transformation matrix.

This matrix can be obtained analytically given the front-end
definition [4], or in a constrained MLLR model-based estima-
tion [40], or simply as a simple linear regression as in [12]. In the
case of linear regression, we can use the well-known result of
the multidimensional regression minimum square error (MSE)
to estimate the best regression matrix between the warped cep-
strum obtained from (4) and the unwarped cepstrum [12]. We
have depicted the values of the determinant of the empirically
calculated matrices for the ETSI front-end with 39 dimensions
in Fig. 11.

In the experimental section, the results related with MATE
were calculated with the approximation of , since we
reported similar performance in our experiments including or
approximating the Jacobian term [12].

APPENDIX II

The expanded auxiliary functions, and , are de-
fined as follows

(II-1)

(II-2)

We can express (II-1) and (II-2) as result a marginalization
over all possible values of and as

(II-3)

(II-4)

Then, applying the first-order HMM assumptions, as in (13),
and splitting the sequence and applying Bayes rule follows:

(II-5)

(II-6)

where we can identify the first term as the recursive expression
as defined in (II-1) and (II-2), the second term a transition prob-
ability, and the third the pdf of the augmented state space as
defined in (8). Then, the recursive expressions are

(II-7)

(II-8)

Then, the previous expressions for the expected values (25)
and (31) can be calculated using these auxiliary functions as

(II-9)

(II-10)

(II-11)

(II-12)
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and

(II-13)

(II-14)

(II-15)

(II-16)

(II-17)

(II-18)
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